Linear Self-Assembly of Nanoparticles Within Liquid Crystal Defect Arrays
نویسندگان
چکیده
منابع مشابه
Linear self-assembly of nanoparticles within liquid crystal defect arrays.
In the presence of oriented smectic liquid crystal defects, hybrid systems of nanoparticles/liquid crystals form straight chains of nanoparticles of length longer than tens of micrometers and width equal to one single nanoparticle. The interparticle distance in a chain can be varied between a few micrometers and 1.5 nm, highlighting the control of optical absorption by light polarization monito...
متن کاملSelf-assembly of linear arrays of semiconductor nanoparticles on carbon single-walled nanotubes.
Ligand-stabilized nanocrystals (NCs) were strongly bound to the nanotube surfaces by simple van der Waals forces. Linear arrays of CdSe and InP quantum dots were formed by self-assembly using the grooves in bundles of carbon single-walled nanotubes (SWNTs) as a one-dimensional template. A simple geometrical model explains the ordering in terms of the anisotropic properties of the nanotube surfa...
متن کاملDNA-templated self-assembly of protein and nanoparticle linear arrays.
Self-assembling DNA tiling lattices represent a versatile system for nanoscale construction. Self-assembled DNA arrays provide an excellent template for spatially positioning other molecules with increased relative precision and programmability. Here we report an experiment using a linear array of DNA triple crossover tiles to controllably template the self-assembly of single-layer or double-la...
متن کاملNanoparticle self-assembly at the interface of liquid crystal droplets.
Nanoparticles adsorbed at the interface of nematic liquid crystals are known to form ordered structures whose morphology depends on the orientation of the underlying nematic field. The origin of such structures is believed to result from an interplay between the liquid crystal orientation at the particles' surface, the orientation at the liquid crystal's air interface, and the bulk elasticity o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Materials
سال: 2012
ISSN: 0935-9648
DOI: 10.1002/adma.201103791